Hall Ticket No: Course Code: 14SP

MADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MADANAPALLE

(UGC-AUTONOMOUS)

M.Tech I Year I Semester (R14) Supplementary End Semester Examinations – August 2018

MODERN CONTROL THEORY

(Solar Power Systems)				
Time: 3Hrs Max Marks: 60				
Attempt all the questions. All parts of the question must be answered in one place only. In Q.no 1 to 5 answer either Part A or Part B only. Q.no 6 which is a case study is compulsory.				
Q.1(A)	Describe the significant of minimal realization process in SISO and SIMO Transfer Functions.	12M		
	OR			
Q.1(B)	Obtain the state model for the transfer function $\frac{c(s)}{R(s)} = \frac{1}{s^2 + 2s + 3}$	12M		
Q.2(A)	Explain the different techniques for pole assignment by state feedback.	12M		
	Consider a linear system described by the T.F $\frac{y(s)}{u(s)} = \frac{10}{s(s+1)(s+2)}$ Design a feedback			
	controller with a state feedback so that the closed loop poles are placed at -2, -1±j1.			
	OR			
Q.2(B)	Describe the following state space representation methods. a. Controllable canonical form b. Observable canonical form	12M		
Q.3(A)	Explain the procedure to analysis the stability of non-linear system with the help of	12M		
	describing function. OR			
0.3(0)		CNA		
Q.3(B)	i. Explain the properties of state transition matrix.	6M		
	ii. Explain the stability analysis of non Linear systems using phase trajectories.	6M		
Q.4(A)	Describe the solution of algebraic Riccati equation using Eigen values and Eigen	12M		
	vectors.			
0.4(D)	OR	C. 1		
Q.4(B)	i. Explain the Model decomposition and Decoupling by state feedback.	6M		
	ii. Explain briefly about the controller design using output feedback.	6M		
Q.5(A)	i. State and explain the Liapunov stability problem.	6M		
	ii. Consider the second order system described by	6M		
	$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$			
	The equilibrium state is the origin. Determine the stability of the system using Liapunov's method.			
	OR			
Q.5(B)	Write short notes on (i) Lyapunov stability analysis (ii) Popov's stability analysis.	12M		
	END			

Hall Ticket No: Question Paper Code: 14VES1

MADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MADANAPALLE

(UGC-AUTONOMOUS)

M.Tech I Year I Semester (R14) Supplementary End Semester Examinations – Aug 2018 (Regulations: R14)

ANALOG & DIGITAL IC DESIGN

(VLSI & Embedded Systems)

Time: 3Hrs (VLSI & Embedded Systems) Max Marks:		: 60	
Attempt all the questions. All parts of the question must be answered in one place only. In Q.no 1 to 5 answer either Part-A or B only			
Q.1(A)	Explain the working principle of active biased Common Gate amplifier with relevant diagrams and expressions. OR	12M	
Q.1(B)	How Open Circuit time constant method can be used in common source FET amplifier and derive the expression for Voltage gain.	12M	
Q.2(A)	Write short notes on Two stage CMOS Op-Amp with neat sketches.	12M	
	OR		
Q.2(B)	What are the various compensation techniques used in Op-Amps? Explain.	12M	
Q.3(A)	How high Swing current mirrors are used in Analog ICs? Explain.	12M	
	OR		
Q.3(B)	Write about the principle of operation of Folded Cascode Op-Amp.	12M	
Q.4(A)	Design the second-order MASH modulator using first-order modulators and describe the relations between them.	12M	
	OR		
Q.4(B)	What is OTA? Explain about the working principle of it.	12M	
Q.5(A)	Implement various ALU functions with an adder circuit.	12M	
	OR		
Q.5(B)	Write Short notes on (i) Carry Look Ahead adder (ii) Serial Parallel multiplier *** END***	12M	